State-Periodic Adaptive Compensation of Cogging and Coulomb Friction in Permanent Magnet Linear Motors

نویسندگان

  • Hyosung Ahn
  • YangQuan Chen
  • Huifang Dou
  • Hyo-Sung Ahn
چکیده

This paper focuses on the state-periodic adaptive compensation of cogging and Coulomb friction for permanent magnet linear motors (PMLM) executing a task repeatedly. The cogging force is considered as a position dependent disturbance and the considered Coulomb friction is non-Lipschitz at zero velocity. The key idea of our disturbance compensation method is to use one trajectory-period past information along the state axis to update the current adaptation law. The new method consists of three different steps: Firstly, in the first repetitive trajectory, an adaptive compensator is designed to guarantee the `2-stability of the overall system; secondly, from the second repetitive trajectory and onwards, a trajectory-periodic adaptive compensator is designed to stabilize the system; and finally, to make use of the stored past state-dependent cogging information, a search process is utilized for adapting the current cogging coefficient. The validity of our adaptive cogging and friction compensator is illustrated through the actual PMLM model based simulation. Index Terms Cogging force, Coulomb friction force, state-dependent disturbance, adaptive control, trajectory-periodic adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Robust Control of a Linear Motor Driven Precision Industrial Gantry with Improved Cogging Force Compensation

This paper proposes a new model for cogging forces of linear motor systems. Sinusoidal functions of positions are used to capture the largely periodic nature of cogging forces with respect to position effectively while B-spline functions are employed to account for the additional aperiodic part of cogging forces. This model is experimentally demonstrated to be able to capture both the periodic ...

متن کامل

Double Layer Magnet Design Technique for Cogging Torque Reduction of Dual Rotor Single Stator Axial Flux Brushless DC Motor

Cogging torque is the major limitation of axial flux permanent magnet motors. The reduction of cogging torque during the design process is highly desirable to enhance the overall performance of axial flux permanent magnet motors. This paper presents a double-layer magnet design technique for cogging torque reduction of axial flux permanent magnet motor. Initially, 250 W, 150 rpm axial flux brus...

متن کامل

Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...

متن کامل

Minimization of Cogging Force in Fractional-Slot Permanent Magnet Linear Motors with Double-Layer Concentrated Windings

Abstract: Permanent magnet linear motors (PMLMs) with double-layer concentrated windings generally show significant cogging forces due to the introduction of auxiliary teeth for eliminating the end-effect induced phase unbalance, even when the fractional-slot technology is applied. This paper presents a novel approach to reduce the cogging force by adjusting the armature core dimensions in frac...

متن کامل

Analytical Modeling of Magnetic Field Distribution in Inner Rotor Brushless Magnet Segmented Surface Inset Permanent Magnet Machines

Brushless permanent magnet surface inset machines are interested in industrial applications due to their high efficiency and power density. Magnet segmentation is a common technique in order to mitigate cogging torque and electromagnetic torque components in these machines. An accurate computation of magnetic vector potential is necessary in order to compute cogging torque, electromagnetic torq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004